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Two pressure-driven streams of two miscible liquids can only mix by diffusion in microfluidic channels
because of the low Reynolds number. We present an idea to generate mixing by “chaotic advection” in
microscale geometries. That is, we consider using induced-charge electro-osmosis to generate a second flow
and then modulate between the pressure-driven and induced-charge flows. By using the combined method
consisting of the boundary element method, the Lagrangian particle tracking method, and the random-walk
method, we analyze mixing efficiency, mixing time, and mixing length, with the effects of modulation fre-
quency and molecular diffusivity, and compare our proposed mixer with other mixers. By this analysis, we find
that chaotic mixing can be produced efficiently in a microfluidic channel by switching between pressure-driven
and induced-charge flows in a wide range of Péclet number under the specific condition of Strouhal number.
By using our proposed mixer, we can expect to realize efficient chaotic mixing with minimum voltage in an
ordinary flow channel with a simple structure without an oblique electric field even at large Péclet number.
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I. INTRODUCTION

Two pressure-driven streams of two miscible liquids mix
only through diffusion in microgeometries. This is because
the flows typically have low Reynolds numbers and the resi-
dence times are typically too small for efficient molecular
diffusion to occur. Hence, efficient mixers are important in
the microfluidic applications; e.g., in the homogenization of
solutions of regents used in chemical reactions. Because of
this importance, several methods for microfluidic mixing
have been reported, typically based upon clever geometries
�1,2�, miniature stirrers �3,4�, or external agitations using ex-
ternal fields �5,6�.

Recently, mixers that employ a vortex flow around metal
posts due to induced-charge electro-osmosis �ICEO� �7–9�
are proposed, and they have attracted considerable attention
in the context of microfluidic applications �10–19� because
they can produce a large vortex flow for mixing and a large
net flow for pumping ��mm /s� with a small voltage ��V�
by the simple structure. ICEO is different from classical
electro-osmosis, because it results from the interaction be-
tween the electric field and ions in the electric double layer
formed by the polarizing effect of the electric field itself
�7–9,20–22�; i.e., the velocity of resulting flow is propor-
tional to the square of the electric field, and thus ICEO can
avoid many dc problems such as chemical reactions in an
electrolyte.

Aref �23� demonstrated that, when flow patterns form
closed orbits, one can induce Lagrangian chaos and effective
stirring by alternating periodically between two or more flow
patterns. In this context, Zhao and Bau �11� have proposed a
chaotic mixer using ICEO in a closed chamber on the basis
of Aref’s method that uses chaotic advection. In the mixer,
periodic switching between a vertical and an oblique electric
field is used to produce two kinds of vortex flows around a
circular metal cylinder. The chaotic mixer using chaotic ad-
vection is important because simple vortex mixers never

work in microfluidic channels in the absence of molecular
diffusivity �i.e., at infinite Péclet number� because the vortex
flow is also a laminar flow.

However, mixing must be produced in a directional mi-
crofluidic channel in many realistic applications such as mi-
cro total analysis systems and biological diagnostic systems.
Further, to satisfy the requirements for miniaturization and
low-voltage design, we require an ICEO mixer that can be
operated in the absence of an oblique electric field. Appar-
ently, the design concept of an ICEO mixer in a flow channel
is different from that of the closed chamber. Thus, a chaotic
ICEO mixer operated in a directional flow channel without
an oblique electric field is important as the simplest chaotic
mixer that works well in a wide range of Péclet number.

Nevertheless, thus far, no attempt has been made for pro-
ducing chaotic mixing by using a directional flow itself along
with a vortex flow. Thus, we consider using induced-charge
electro-osmosis to generate a second flow and then modu-
lates between the pressure-driven and induced-charge flows.
In this study, we focus on a chaotic ICEO mixer that
switches between a pressure-driven directional flow and a
vortex flow produced by the application of a vertical electric
field and elucidate its design concept by using the boundary
element method combined with the thin double layer ap-
proximation. Further, because Péclet number is not truly in-
finite in a real channel, we consider finite Péclet number by
using the random-walk method along with Lagrangian par-
ticle tracking method. Furthermore, we compare our pro-
posed chaotic ICEO mixer with other several ideas that have
been proposed to mix two miscible streams.

This paper is presented in five sections. In Sec. II, we
describe theory for a geometry model, a flow model, the
Lagrangian particle tracking method with the box counting
method, the random-walk method for the analysis of finite
molecular diffusivity, and a simple model at infinite Péclet
number. Based on these models, the results for the basic
performance of chaotic ICEO mixers at infinite Péclet num-
ber, the effect of switching period, and the effect of molecu-
lar diffusivity, are presented in Sec. III. Following a discus-
sion in Sec. IV, our conclusions are summarized in Sec. V.*sugioka.hideyuki@canon.co.jp
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II. THEORY

A. Geometry model

Figure 1 shows a schematic diagram of the chaotic ICEO
mixer that uses a pressure-driven directional flow and a vor-
tex flow. In Fig. 1�a�, we assume that two liquids �Lq1, Lq2�
mix in the rectangular channel. As shown in Fig. 1�a�, to
produce a vortex flow due to ICEO, we typically place four
circular metal cylinders of radius c=0.1w at the positions
�xi ,yi� in a rectangular channel of length L=2.25w and width
w=100 �m, where xi and yi are the coordinates of the center
of the cylinder of the ith number; e.g., x1=x3=0.5w+d0 /2,
x2=x4=0.5w−d0 /2, y1=d1, y2=2d1, y3=3d1, y4=4d1, d0
=0.6w, and d1=0.45w. In Fig. 1, the vortex flow produced by
the zig-zag structure is characterized by d0 and d1. As shown
in Fig. 1�b�, we alternate between period 1 ��P�0,V0=0�
and period 2 ��P=0,V0�0� to produce chaotic mixing,
where �P is a pressure difference between the inlet and out-
let, and V0 is the voltage applied to the electrodes.

B. Flow model

Numerically, we consider a two-dimensional quasistatic
Stokes flow without Brownian motion �19,24,25�; i.e., we
consider the limit in which the Reynolds number Re tends to
zero and the Péclet number is infinite. We assume the posts
of the metal cylinder to be polarizable in an electrolytic so-
lution under a dc or ac electric field. The motion of the
surrounding fluid must satisfy Stokes equations modified by
the inclusion of an electrical stress. However, by using
matched asymptotic expansion �26�, we can reduce them to
the classical Stokes equations as follows:

��2v − �p = 0, � · v = 0, �1�

On Sp
+�j��E � 0�:v�j� = vs

�j�, �2�

On Sp
+�j��E = 0�:v�j� = 0 �3�

where Sp
+�j� denotes the surface defined as the outer edge of

the double layer, on the j’s metal cylinder �j=1,2 , . . . ,N�.
Further, N is the number of the metal cylinders, E is the

electric field, v is the velocity, and p is the pressure. Under a
wide range of conditions, the local slip velocity vs

�j� is given
by the Helmholtz-Smoluchowski formula,

vs
�j� = −

���j�

�
Es

�j� �4�

where Es
�j� is the tangential component of the electric field, �

��1 mPa·s� is the viscosity, � ��80�0� is the dielectric per-
mittivity of the solvent �typically water�, and �0 is the
vacuum permittivity. Here, a zeta potential ��j� around the j’s
metal is generally defined as ��j�=�i

�j�−� f
�j�, where �i

�j� is the
electric potential of the metal cylinder that is equal to the
electric potential without double layer, and � f

�j� is the electric
potential just outside the double layer

To consider the slip velocity under a bounded condition,
we solve the electric potentials ��i

�j� and � f
�j�� before calcu-

lating a flow field by the boundary element method based on
the following Laplace’s equation, �2�=0. On the one hand,
we use the Dirichlet boundary condition for the upper and
lower walls �electrodes�; i.e., �=+0.5V0 at x=0, �=−0.5V0
at x=w, where V0 is an applied voltage across the channel.
On the other hand, we use the Neumann boundary condition
for the left and right walls; i.e., n ·��=0 at y=0 and L,
where n is the surface-normal unit vector. In addition to
those boundary conditions, to obtain a final potential, we also
use the Neumann boundary condition �i.e., n ·��=0� on the
metal surface. Further, to obtain a initial potential, we use the
condition that j’s metal cylinder have an unknown surface
potential �i

�j� and require the electrical neutral condition that
��j��n ·���ds=0. Thus, we can numerically calculate a flow
field for a bounded domain. It should be noted that we use
the boundary condition that the velocity on the wall of the
channel is zero and that the pressures of the inlet and outlet
are P1 and P2, respectively. On the basis of Eqs. �1�–�4�, we
calculate the flow fields of the ICEO mixer for a bounded
domain by the boundary element method. Further, it is con-
venient to define the representative velocity of a vortex as
U0�=cE0

2 /�� �7�, where c is the radius of the metal posts and
E0= �E�=V0 /w. Note that to obtain a precise flow field near
the wall and the metal surfaces, we use analytical integration
to obtain the matrix elements of the boundary element
method because the Gauss integration produces a large error
near the wall.

C. Lagrangian particle tracking method
with box counting method

The Lagrangian particle tracking method in mixing is an
analyzing method to visualize a mixing state by tracking
passive �tracer� particles in flow velocity fields on the basis
of the Lagrangian analysis of motion �4,11�; i.e., dr /dt
=v�r , t�. In the simulation, we switch between two flow pat-
terns during a period T; we apply the first flow pattern for
0� t�T /2 and then the second pattern for T /2� t�T. This
process is repeated continuously over time, and passive par-
ticles are moved and spread. Note that we use periodical
condition when we move the particles to consider a long
channel with a short channel. By the Lagrangian particle
tracking method, we obtain images of the distribution of par-
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FIG. 1. Schematic diagram of chaotic ICEO mixer. �a� Geom-
etry; �b� switching method. 1–4: metal posts that induce quadruple
electro-osmotic flow; 11: pair of electrodes; and 12: electric field.
Here, L=2.25w and w=100 �m are the length and width of the
periodic part of the rectangular channel. Lq1 and Lq2 are two liq-
uids, and c=0.1w is the radius of the metal posts; x1=x3=0.5w
+d0 /2, x2=x4=0.5w−d0 /2, y1=d1, y2=2d1, y3=3d1, y4=4d1, d0

=0.6w, d1=0.45w, where �xi ,yi� are the coordinates of the ith
number.
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ticles and visually evaluate the performance of the mixer for
various parameters.

To evaluate the mixing performance quantitatively, we
use the box counting method �4�; we define the stirring index
	 as 	 j =�i=1

i=K
ij /K, where 
ij =nij /nave,j if nij �nave,j, and

ij =1 if nij �nave,j. Here, nave,j=Nj /K, Nj is the total number
of particle j, K is the number of boxes, and nij is the number
of particle j in the ith box. Note that particle 1 and 2 are
corresponding to upper �red� and lower �blue� particles, re-
spectively, and particle 0 is a red or blue particle; i.e., ni0
=ni1+ni2 and N0=N1+N2. Similarly, we can define 	3 as the
stirring index corresponding to ni3=	ni1ni2 and N3=	N1N2.
Through this paper, we use the values that N0=20�40�2
=1600, N1=N2=20�40=800, N3=800, and K=10�20
=200. In this case, nave,0=8, nave,1=nave,2=4, and nave,3=4.

If particles are concentrated in a small region, few over-
populated boxes �boxes under the condition that nij nave,j
and 
ij =1� and many empty boxes �boxes under the condi-
tion that nij =0 and 
ij =0� are created. In this case, 	 ap-
proaches 0. However, if particles are distributed uniformly
throughout the channel, many boxes containing the average
number of particles �boxes under the condition that nij
�nave,j and 
ij �1� are created. In this case, 	 j approaches 1.
Hence, 	 j is interpreted as the stirring index. In particular, 	3
is useful to evaluate the degree of mixing between particles
1 and 2.

D. Random-walk method for the analysis
of finite molecular diffusivity

Random walks are strongly related to diffusive process
�27�; i.e., normal diffusion of tracers in liquids is result of the
random walks, and that the variance of the ensemble of trac-
ers spreads as

�2�t� = 
x2�t�� − 
x�t��2 = 2Dt , �5�

where D is the molecular diffusivity �x�t� represents one di-
mensional motion�. If the tracer particles take step length l,
with a probability distribution function for step lengths

Prw�l� =
1

	2��
e−l2/2�2

, �6�

the central limit theorem shows that

D =

l2� − 
l�2

2�t
, �7�

where 
ln� are the moments of Prw, and �t is the time be-
tween each step.

Thus, molecular diffusion is simulated by the random-
walk method combined with Lagrange particle tracking
method; i.e., at each time step, after moving particles as
rL�t��r�t−�t�+v�r , t−�t��t, we move tracer particles as
r�t�=rL�t�+�rrw, where �rrw= ��x ,�y�. Here, �x and �y
are the random numbers that satisfy Eq. �5�, and they are
generated by the box-muller method. In the algorithm of the
random-walk process, if a fluid particle moves into the re-
gion of circular cylinders, we do not move the particle.

E. Simple model at infinite Péclet number

As a first attempt, we can assume that

	�t� = 	max�1 − e−t/�m� , �8�

where 	max is a maximum or saturated value and �m is a time
constant of the mixing phenomenon. If we define a mixing
time tm as the time when 	�t� reaches 0.95	max, tm /�m
=−ln 0.05�3. To modulate between flows, we consider that
considerable motions of fluid particles are required such that
U0Td0 and U1Td1; i.e., 1 /St0U0 / fd01 and 1 /St1
U1 / fd11, where f is a switching frequency and U1 is an
average velocity of a pressure-driven flow. Here, St0 and St1
are Strouhal numbers related to a vortex flow and a pressure-
driven flow, respectively. Strouhal number is a dimensionless
number oscillating flow mechanisms. Thus, we propose fol-
lowing phenomenological formulations as a first attempt;

	max = C1�1 − e−1/St1��1 − e−1/St0� , �9�

tm/T0 = C2 + C3e−1/St0f�T� + C4e−1/St1f�T�, �10�

Lm = U1tm, �11�

where T0 is a time scale. Here, C1, C2, C3, and C4 are con-
stant parameters, while f�T� is a function of T.

III. RESULTS

A. Basic performance of chaotic ICEO mixers
at infinite Péclet number

Figure 2 shows the performance of the chaotic ICEO
mixer that has a zig-zag structure of four metal posts �type
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FIG. 2. �Color� Performance of chaotic ICEO mixer that has a
zig-zag structure of four metal posts �type A�. �a� Flow 1 �E0=0�;
�b� Flow 2 �E0�0,�=90°�; �c� t /T0=0; �d� t /T0=100; �e� t /T0

=200; and �f� t /T0=500. Here, d0 /w=0.6 and d1 /w=0.45. �a� and
�b� Two flow fields; �a� a directional flow resulting from a pressure
difference T0�P /� �=2.4� when E=0 and �b� a vortex flow result-
ing from electro-osmosis induced around cylindrical metal posts by
the application of an electric field E=E0i �T0U0 /w=T0cE0

2 /w�
=0.04� when T0�P /�=0. If T0=1 mm /s, �=1 mPa·s, and w
=100 �m, a directional flow and a vortex flow are driven by �P
=2.4 Pa and E0=2.38 V /m �U0=4 mm /s�, respectively. �c�–�f�
Distribution of passive tracer particles at T /2T0=20.
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A�. Here, d0 /w=0.6 and d1 /w=0.45. Figures 2�a� and 2�b�
show two flow fields: �a� a directional flow resulting from a
pressure difference T0�P /��=2.4� when E=0 and �b� a vor-
tex flow resulting from electro-osmosis induced around
cylindrical metal posts by the application of an electric
field E=E0i �T0U0 /w=T0cE0

2 /w�=0.04� when T0�P /�=0,
where T0 is a time scale; e.g., if T0=1 mm /s, �=1 mPa·s,

and w=100 �m, a directional flow and a vortex flow are
driven by �P=2.4 Pa and E0=2.38 V /m �U0=4 mm /s�,
respectively. In Fig. 2�a�, we observe a typical pressure flow
with viscosity; however, it resembles a winding flow of the
presence of metal posts near the wall. In Fig. 2�b�, we ob-
serve large vortices across the channel; they are produced by
the presence of a pair of upper and lower metal posts. In
Figs. 2�c�–2�f�, we show the dispersion of 1600 particles at
various times. As shown in Figs. 2�c�–2�f�, chaotic mixing is
produced by switching between the two flows. Here, the time
interval is T /2T0=20. In Fig. 2�c�, to examine the mixing
between the two liquids emanating from the left of the chan-
nel, we place particle 1 �red� and particle 2 �blue� near the
inlet; particle 1 �red� region, 0.1�x /w�0.5; particle 2
�blue� region, 0.5�x /w�0.9. The simulation begins from
the interval in which the directional flow is generated. The
particles move from the left to the right along the streams of
the directional flow shown in Fig. 2�a�. After the interval, the
particles are subjected to the vortex flow shown in Fig. 2�a�.
Figure 2�d� shows the distribution of the particles at t /T0
=100. Although the particles are subjected to the directional
flow three times and the vortex flow two times across the
channel, the switching times are not sufficient for mixing.
Figure 2�e� shows that mixing at t /T0=200 is also not suffi-
cient for achieving a uniform distribution of particles. Figure
2�e� shows that at t /T0=500, the particle 1 �red� and particle
2 �blue� spread over the entire mixing domain. An efficient
mixer should be capable of producing such a result. Note that
we consider a periodic boundary condition in order to repre-
sent a long channel as a short channel.

Figure 3 shows the performance of the ICEO mixer that
has a linear geometry of four metal posts �type B�. As shown
in Fig. 3, both particles do not mix each other, although
upper �red� and lower �blue� particles are dispersed indepen-
dently in upper and lower regions, respectively. Namely, a
symmetrical structure in which the plane of symmetry is at
x=w /2 has a drawback in that it divides the flow into two
symmetrical regions; i.e., the upper and lower regions. Fig-
ure 4 shows the performance of ICEO mixer that has eight
particles �type C�. As shown in Fig. 4, it is disadvantageous
to place many small metal posts across the channel, because
they create small vortices separated from each other and do
not contribute to large-scale mixing. Thus, we believe that
the zig-zag structure of type A is more suitable for chaotic
mixing in the flow channel than the linear structure of type B
and the 8 particle structures of type C.

Next, we present a quantitative evaluation of the mixing
problem. Here, we use 	3 to evaluate mixing efficiency since
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FIG. 3. �Color� Performance of ICEO mixer that has a linear
geometry of four metal posts �type B�. �a� Flow 1 �E0=0�; �b� Flow
2 �E0�0,�=90°�; �c� t /T0=0; �d� t /T0=100; �e� t /T0=200; and �f�
t /T0=500. Here, d0 /w=0.6 and d1 /w=0.45. �a� and �b�: Two flow
fields; �a� directional flow resulting from a pressure difference
T0�P /�=2.4 when E=0 and �b� vortex flow resulting from electro-
osmosis induced around cylindrical metal posts when E=E0i
T0U0 /w=T0cE0

2 /w�=0.04, and T0�P /�=0; Typically, T0

=1 mm /s, �=1 mPa·s, and w=100 �m. �c�–�f�: Distribution of
passive tracer particles at T /2T0=20.
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FIG. 4. �Color� Performance of ICEO mixer that has 8 particles
�type C�. �a� Flow 1 �E0=0�; �b� Flow 2 �E0�0,�=90°�; �c�
t /T0=0; �d� t /T0=100; �e� t /T0=200; and �f� t /T0=500. Here,
d0 /w=0.6 and d1 /w=0.45. �a� and �b�: Two flow fields; �a� direc-
tional flow resulting from a pressure difference T0�P /�=2.4 when
E=0 and �b� vortex flow resulting from electro-osmosis induced
around cylindrical metal posts when E=E0i, T0U0 /w=T0cE0

2 /w�
=0.04, and T0�P /�=0; Typically, T0=1 mm /s, �=1 mPa·s, and
w=100 �m. �c�–�f�: Distribution of passive tracer particles at
T /2T0=20. Here, x1 /w=x3 /w=0.4, x2 /w=x4 /w=0.1, x5 /w=x7 /w
=0.9, x6 /w=x8 /w=0.6, y1 /w=x5 /w=0.45, y2 /w=x6 /w=0.90,
x3 /w=x7 /w=1.35, and x4 /w=x8 /w=1.80.
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=0.04 and T0�P /�=2.4.
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	0 and 	1 can increase even when particle 1 �red� and particle
2 �blue� are stirred independently in type B, as shown in Fig.
5�a�. Figure 5�b� shows the dependence of 	3 on time for
various ICEO mixers �types A–C�. As shown in Fig. 5�b�,
type A shows good mixing performance, while mixing per-
formance of type B is zero. Furthermore, although it is dif-
ficult to determine the mixing time tmix from Fig. 2 of the
trajectory method, we can obtain tmix�350 ms for type A
from Fig. 5�b� by the box counting method.

B. Effect of switching period

Next, we show the effect of the switching period. Figure 6
shows the dependence of 	3, tm, and Lm on T /2 at infinite
Péclet number for type A. As shown in Fig. 6, there exists an
appropriate switching period for producing chaotic mixing,
and the values of 	3 are small when the switching periods are
too short or long to mix the liquids. However, as mentioned
before, those results should be replotted on St0�=fd0 /U0� and
St1�=fd1 /U1� as shown in Fig. 7. Here, d0 �=0.6w� and
d1 �=0.45w� are characteristic lengths of vortex and direc-
tional flows. As shown in Fig. 7, we observe that the analyti-
cal results of 	3, tm, and Lm agree fairly well with the nu-
merical results, although the agreement between numerical
results and analytical results of tm and Lm is very bad in Figs.

7�b� and 7�c�. Here, we set that C1=0.62, C2=300, C3
=400, C4=600, and f�T�=0.3�T /20�1.5 in Eqs. �9�–�11�.
From Figs. 7�a� and 7�d�, we find that mixing efficiency is
enhanced for the suitable Strouhal number �St0�1 and St1
�1�. Further, from Figs. 7�b�, 7�c�, 7�e�, and 7�f�, mixing
time and length are approximately 1 s and 1 mm, respec-
tively, in the suitable range of Strouhal number �St0�1 and
St1�1�.

Figures 8�a�–8�c� �Figs. 8�d�–8�f�� show the dependence
of 	3, tm, and Lm, respectively, on U0�U1� at infinite Péclet
number for type A. In Fig. 8, lines show the analytical results
of the simple model, and symbols show numerical results. As
shown in Fig. 8, we observe that the analytical results of 	3,
tm and Lm also agree fairly well with the numerical results.
Further, from Figs. 8�a� and 8�d�, we find that mixing is
enhanced when 1 /St01 and 1 /St11 as predicted by the
simple model. Furthermore, in Figs. 8�b�, 8�c�, 8�e�, and 8�f�,
we also find that mixing time and length are approximately 1
s and 1 mm, respectively, in the suitable range of Strouhal
number �St0�1 and St1�1�.

C. Effect of molecular diffusivity

Next, we show the effect of molecular diffusivity. Figure
9 shows the dependence of 	3, tm, and Lm on f in the pres-
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ence of molecular diffusivity �D=1.0−9 m2 /s� for type A.
Because of the presence of molecular diffusivity, mixing ef-
ficiency is not so low even in the unsuitable range of Strou-
hal number �St01 and St11� as shown in Figs. 9�a� and
9�d�. Nevertheless, we can see the enhancement of mixing
efficiency in the suitable range of Strouhal number �St0�1
and St1�1�. Further, for typical values, mixing time and
length are approximately 400 to 800 ms and 0.5 to 1.5 mm,
respectively, in the suitable range of Strouhal number.

Figure 10 shows the dependence of 	3, tm, and Lm on D
�Figs. 10�a�–10�c�� and Pe1 �=U1w /D� �Figs. 10�d�–10�f��
for type A and the simple rectangular mixer �type D� that
uses just molecular diffusion, where Pe1 is a Péclet number
for a directional flow. Note that Péclet number is a dimen-
sionless number the rate of advection of a flow to its rate of
diffusion. Here, T0�P /�=2.4 and T0U0 /w=0.04; T0U1 /w

=0.024 and 0.09 for types A and D, respectively. In Figs.
10�d�–10�f�, solid and broken lines show the scaling func-
tions that are made to fit numerical results for type D and A,
respectively; i.e., for type D, �max=0.85, tm=0.1w Pe1 /U1,
and Lm=0.1w Pe; and for type A, 	max=1.96−Pe1

0.033, tm /T0
=340�1−e−Pe1/60�, and Lm /T0U1=340�1−e−Pe1/60�. Namely,
the mixing time and mixing length of type A are almost
constant, while those of type D are proportional to Péclet
number. Further, as shown in Figs. 10�e� and 10�f�, mixing
time and length of type A are shorter than those of type D in
the ranges that Pe1300 and Pe1100, respectively.

Figure 11 shows the performance of simple vortex mixers
without switching for the structures of types A–C. Here,
T0�P /�=2.4 and T0U0 /w=0.04; typically, T0=1 ms, �
=1 mPa·s, and w=100 �m. From Fig. 11, we can find that
the structure of type A is more effective for mixing than
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those of type B and type C; i.e., the large vortex flow to
across two miscible liquid regions is required for simple vor-
tex mixers to obtain good performance. Further, as shown
in Fig. 11�c�, mixing times of simple vortex mixers are
approximately proportional to logarithm of Pe0, where Pe0
�=U0w /D� is a Péclet number for a vortex flow. Furthermore,
in Figs. 11�a� and 11�b�, the performance of type D is also
plotted for the comparison. By this comparison, we can find
that the values of tm of simple vortex mixers are smaller than
those of type D in the range that D�2�10−9 m2 /s, and
thus it is useful to use vortex flow in this range.

IV. DISCUSSION

At infinite Péclet number and low Reynolds number, we
need to use a chaotic mixer proposed by Aref �23�, and need
to switch fluid orbitals finely. Nevertheless, so far, research-
ers have only explored the chaotic mixer using two kinds of
vortex flows �11�. Thus, we have first shown that the chaotic
mixer using a directional flow and a vortex flow is also use-
ful for mixing, although Aref demonstrated that one can gen-
erate Lagrangian chaos by alternating between two �or more�
different closed-orbit patterns. In particular, the chaotic
mixer using a pressure-driven flow and a vortex flow due to
ICEO is useful because of its simplicity and effectiveness of
applying voltage. Further, different from ordinary chaotic
mixers, the proposed chaotic mixer requires the specific
modulation frequency to modulate fluid orbitals each other;
i.e., by the analysis using the boundary element method com-
bined with the thin double layer approximation, we have first
shown that chaotic mixing is produced under the condition
that St0= fd0 /U0�1 and St1= fd1 /U1�1.

A simple microfluidic mixer and simple vortex mixers
are also expected to work at finite Péclet number, although
these mixers never work at infinite Péclet number and low
Reynolds number. To clarify this problem, we have consid-
ered finite Péclet number by using random-walk method

along with Lagrangian tracking method, and compared our
proposed mixer with a simple microfluidic mixer, simple
vortex mixers, and other chaotic mixers. From the view point
of the random-walk theory, the mixing time of a simple
mixer �type D� is estimated by the relation that 	2Dtm

simple

�w /2; i.e., tm
simple�w2 /8D�Pe1 w /8U1�0.1Pe1 w /U1 and

Lm
simple�Pe1 w /8�0.1Pe1 w. Thus, the numerical results of a

simple mixer using the random-walk method along with the
Lagrangian particle tracking method are justified. Further,
the values that D=10−10 m2 /s, w=100 �m, and U1=1 to 10
mm/s are the typical values of many BioMEMS applications.
For this system, Pe1=U1w /D=1000 to 10 000 and Re
=U1w /�=0.1 to 1, where � is the kinematic viscosity of the
fluid; the mixing length and mixing time of a simple mixer
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are tm
simple�0.1Pe1 w /U1=10 to 100 s and Lm

simple�0.1Pe1 w
=1 to 10 cm, respectively, while the mixing length and mix-
ing time of a chaotic mixer are tm

chaos�0.4 s and Lm
chaos

�1 mm, respectively. Thus, the proposed chaotic mixer is
more effective than the simple microfluidic mixer for many
BioMEMS applications. Furthermore, the mixing time of a
simple vortex mixer of the structure of type A is tm

vortex

�0.7 s at Pe0=1000, and is proportional to ln Pe0. Thus, the
simple vortex mixer is also more effective than the simple
microfluidic mixer. Note that we can see similar discussions
in �1�. However, mixing efficiency is decreasing as the Péclet
number is increasing in the range that Pe01000. Therefore,
the chaotic mixer is more effective than simple vortex mix-
ers, since it works well in the wide rage of Péclet number.

To prevent sample dilution, the Harnett et al. �10� devel-
oped an ICEO mixer using many large triangular posts that
form two directional channels for loading and many connect-
ing channels for mixing. Although the ICEO mixer in �10�
makes long vortex flows in the x direction and pressure flows
in the y direction, it is intrinsically a simple vortex mixer
because the directional flows are just used to prepare samples
without mixing and the vortex flows does not cross the di-
rectional flows. Thus, the design concept is completely dif-
ferent from ours. Further, the performance of many passive
mixers �1� that use baffles or obstacles that create a tortuous
pathway are probably similar to that of a simple vortex mixer
because the tortuous pathway also promotes mixing by
stretching the interface between the liquids and decreasing
the distance over which diffusion must take place. Note that
Giona et al. �28� showed that mixing is enhanced due to the
increase of the intermaterial contact area by the time-periodic
sine flow by using the advection-diffusion equation. Further-
more, Glasgow and Aubry �29� analyzed the effect of pulsing
the classical electro-osmotic flow rate in one inlet only as
well as in the two inlets, and demonstrated that the best
results occur when both inlets are pulsed out of phase. In this

case, interface is shown to stretch, retain one fold, and sweep
through the confluence zone, leading good mixing. Although
there are many similar points such that the mixer requires
St1�1 �30�, it is not a chaotic mixer using chaotic advection
and the performance is probably similar to that of a simple
vortex mixer.

V. CONCLUSION

In conclusion, we have proposed chaotic ICEO mixers
that switch a pressure-driven directional flow and a vortex
flow and numerically examined their performance. By the
boundary element method combined with the thin double
layer approximation and the Lagrangian particle method
along with random-walk method, we find that �1� chaotic
mixing can be efficiently produced by switching between a
pressure-driven directional flow and a large vortex flow un-
der the condition that St0�=fd0 /U0��1 and St1�=fd1 /U1�
�1; �2� the mixing performance of the chaotic mixer that
has a large vortex flow due to the zig-zag structure of four
metal posts across a channel is better than that of chaotic
mixers that have many smaller vortex flows; �3� the mixing
time of the proposed chaotic mixer is almost constant in all
the range of Péclet number, while the mixing times of a
simple microfluidic mixer and a simple vortex mixer are ap-
proximately proportional to the Péclet number and the loga-
rithm of the Péclet number, respectively. When Péclet num-
ber is relatively large, our proposed method can be useful to
produce chaotic mixing at a low voltage in an ordinary mi-
crofluidic channel using simple electrodes.
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